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Introduction

e Convolutional Neural Networks (CNNs) perform remarkably accurate on
large-scale and complex image datasets such as ImageNet

e But they are vulnerable to adversarial examples and out-distribution
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Out-distribution Problem

e In-distribution samples: Samples that
belong to the same distribution as
training samples

o CNNs achieve high accuracy on in-dist.
samples
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e Out-distribution samples: Samples not
from the same distribution (concept) as
training samples

o CNNs confidently misclassify them as
one of the trained concepts (classes)
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Adversarial Examples

A benign in-dist. sample () with wisely added
nO|Se (5) tO fOOI a CNN (F ) “panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence
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Black-box attack:

o  Learning adversarial samples on a local CNN to attack
other victim CNNs

Adversarial Example [Goodfellow2014ICLR]

White-box attack:

o Assuming have access to a victim CNN, then attacking it
by generating adversaries using the victim CNN
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Related Work

e Detection and Rejection:

o Learning on benign and adversarial examples to detect and reject them.
o Some of them needs to learn additional networks
m Feature squeezing [Xu2018NDSS] : uses adversarial examples to tune threshold for
adversarial detection

m Gross, et. al. train on various adversarial examples to be classified as dustbin
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Related Work (cont.)

e Robust CNNSs:

o Aiming to classify adversarial examples correctly

m Madry, et. al. Learn CNNs over a large number of adversarial examples within an
&-neighboring ball of each benign sample [Madry2018ICLR]

m Distilled network [Papernot2016S&P] obfuscates the gradient of CNNs to make CNNs robust

to white-box attacks. But it has been broken by [Carlini2017S&P]
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Contributions

1. Draw a connection between overgeneralization and lack of robustness of
CNNs
2. Learning an augmented CNN to simultaneously:
e detect out-distribution samples
e reduce misclassification rate of black-box adversarial examples

without

e learning on adversarial examples. Most previous defenses are highly
dependent on accessing to a diverse set of adversarial examples

e sacrificing CNN'’s accuracy significantly

e additional computational overhead

: e
i : X UNIVERSITE 97 78 Oregon State
- LAVAL University



Motivation

Reducing overgeneralization of CNNs in out-distribution regions to decrease
misclassification rates of adversarial examples and out-dist. samples

Adversarial examples are indeed out-dist. samples|cross2017anxiv]

class 1
class 2

Out-dist
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Two-moon dataset: (left) decision regions by a naive MLP, (right)

decisi ions b ted MLP.
ecision regions by a augmente 8 OregonState

o UNIVERSITE
University

7. LAVAL




Proposed Approach

We train the augmented CNN on two additional sets of data (along with original
in-dist. samples):

1. Out-distribution set:
e Natural samples available from other task-irrelevant dataset; not (semantically)
belonging to in-dist classes

2. Interpolated set:

e Interpolated samples from pairs of in-dist. samples from two different classes

e Intuition: an adversarial example contains two different kinds of features
o visible features related to a true class
o invisible features related to a fooling class
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Proposed Approach (cont)

Interpolated samples: For each sample, we selected the nearest samples from
other other classes (the images may be misclassified to the source image).
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Evaluation

Attack Algorithms: Clean T-FGS

2. Targeted FGS (T-FGS) [Goodfellow2017]
you B7es L1e
3. '

lterative FGS (I-FGS) [Goodfellow2017] Frog Horse

1. Fast Gradient Sign (FGS) [Goodfellow2017]

Four types of adversarial examples for MNIST

4. DeepFool (DF) Moosavi2016
Y (DF) Moosavi2016] (first row) and CIFAR-10 (second row)

9. Carlini and Wagner (C&W) [Carlini2017]
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Evaluation (cont.)

e Dataset
o  MNIST [Lecun1998]
o CIFAR-10 [Krizhevsky2009]

e Criteria
o Accuracy: correct classification rate
o Rejection: assigned to dustbin class
o Error: misclassification rate
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Evaluation: Black-box MN

ST Adversaries

Training set: <in-dist, out-dist.>

<MNIST, —>

<MNIST, NotMNIST>

<MNIST, NotMNIST+intrpl.>

Model Naive CNN Augmented CNN Augmented CNN

In-dist. test Acc. 99.5 99.47 99.48
Out-dist. test Rej. - 99.96 99.98

Acc 35.14 19.15
FGS Rej - 65.19 99.59

Err 64.86 15.66 0.06

Acc 16.37 30.97 0.0
I-FGS Rej - 27.08 100

Err 83.63 41.95 0.0

Acc 19.99 1.17 0.0
T-FGS Rej - 95.92 100

Err 80.01 2.91 0.0

Acc 1.89 11.45 5:37
DeepFool Rej - 4.72 89.84

Err 98.11 83.83 4.8

Acc 22.49 27:5 75
C&W (L2) Rej - 5.99 77.49

Err 7751 66.51 15.01

Average Error 80.82 42.17 \ 3.97 /
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Evaluation: Black-box CIFAR-10 Adversaries

Training set: <in-dist, out-dist.> <CIFAR-10, —> <CIFAR-10, CIFAR100> <CIFAR-10, CIFAR100+intrpl.>
Model Naive VGG Augmented VGG Augmented VGG
In-dist. test Acc. 90.53 88.58 86.65
Out-dist. test Re;. - 95.36 96.21
Acc 36.16 27.65 23.94
FGS Rej - 38.94 49.23
Err 63.84 33.41 26.83
Acc 50.34 45.98 41.92
I-FGS Rej - 18.57 25.88
Err 49.66 35.45 32.2
Acc 36.24 27.06 24.2
T-FGS Rej - 40.54 50.77
Err 63.76 324 25.03
Acc 56.82 45.63 42.31
DeepFool Rej - 31.0 38.86
Err 43.18 23.37 18.83
Acc 42.5 46.5 39
C&W (L2) Rej - 18.5 39.5
Err 57.5 35 21.5
Average Error rate 55.59 31.92 \ 24.88 /

o UNIVERSITE

5 LAVAL

A Oregon State

o University



More Expressive Feature Space of Augmented CNN

e The penultimate layer of a CNN can be regarded as feature space [penjo2009]
e Augmented CNNs learn more expressive and representative feature spaces
such that:

o Disentangle natural out-dist. samples from in-dist. ones

o Also separate many of adversaries (without even trained the CNN on them)
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Comparison of feature spaces™ - MNIST

Out-dis. samples FGS adversaries T-FGS adversaries
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Comparison of feature spaces - CIFAR10

Out-dis. samples FGS adversaries T-FGS adversaries
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Conclusion
e Augmented CNNs are more dependable as they:

o Controlling over-generalization in some out-distribution regions
m proper decision-making in presence of out-dist. samples by rejecting them as “dustbin”

o Distengle some of adversarial examples from clean samples through learning more
expressive feature space

o Decreasing error rates on various types of well-known adversarial examples by rejecting
them
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Future work

e Evaluating augmented CNN in white-box setting
e Investigating the features of a an appropriate out-dist. sample set

e Evaluating our method on other large-scaled image and non-image datasets
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