# Towards Dependable Deep CNNs with Out-distribution Learning

Presented by: Arezoo Rajabi

Mahdieh Abbasi, Arezoo Rajabi, Christian Gagné, Rakesh B. Bobba











### Introduction

- Convolutional Neural Networks (CNNs) perform remarkably accurate on large-scale and complex image datasets such as ImageNet
- But they are vulnerable to **adversarial examples** and **out-distribution**







# **Out-distribution Problem**

- In-distribution samples: Samples that belong to the same distribution as training samples
  - CNNs achieve high accuracy on in-dist. samples
- **Out-distribution samples**: Samples not from the same distribution (concept) as training samples
  - CNNs confidently misclassify them as one of the trained concepts (classes)





# **Adversarial Examples**

A benign in-dist. sample (x) with wisely added noise (δ) to fool a CNN (F)

11 011

$$\begin{array}{l} \min_{\delta} \|\delta\|_{p} \\ s.t. \quad F(x+\delta) \neq y^{*} \end{array}$$



- Black-box attack:
  - Learning adversarial samples on a local CNN to attack other victim CNNs
- White-box attack:

UNIVERSITÉ

 Assuming have access to a victim CNN, then attacking it by generating adversaries using the victim CNN Adversarial Example [Goodfellow2014ICLR]



### **Related Work**

- Detection and Rejection:
  - Learning on benign and **adversarial examples** to detect and reject them.
  - Some of them needs to learn additional networks
    - Feature squeezing [Xu2018NDSS]: uses adversarial examples to tune threshold for adversarial detection
    - Gross, et. al. train on various adversarial examples to be classified as dustbin





# Related Work (cont.)

- Robust CNNs:
  - Aiming to classify adversarial examples **correctly** 
    - Madry, et. al. Learn CNNs over a large number of adversarial examples within an

*E*-neighboring ball of each benign sample [Madry2018ICLR]

 Distilled network [Papernot2016S&P] obfuscates the gradient of CNNs to make CNNs robust to white-box attacks. But it has been broken by [Carlini2017S&P]





# Contributions

- 1. Draw a connection between overgeneralization and lack of robustness of CNNs
- 2. Learning an augmented CNN to simultaneously:
  - detect out-distribution samples
  - reduce misclassification rate of <u>black-box</u> adversarial examples

#### without

- learning on adversarial examples. Most previous defenses are highly dependent on accessing to a diverse set of adversarial examples
- sacrificing CNN's accuracy significantly
- additional computational overhead





# **Motivation**

**Reducing overgeneralization** of CNNs in out-distribution regions to decrease misclassification rates of adversarial examples and out-dist. samples

Adversarial examples are indeed out-dist. samples[Gross2017arxiv]



Two-moon dataset: (left) decision regions by a naive MLP, (right) decision regions by a augmented MLP.





# **Proposed Approach**

We train the augmented CNN on two additional sets of data (along with original in-dist. samples):

- 1. Out-distribution set:
  - Natural samples <u>available</u> from other task-irrelevant dataset; not (semantically) belonging to in-dist classes
- 2. Interpolated set:
  - Interpolated samples from pairs of in-dist. samples from two different classes
  - Intuition: an adversarial example contains two different kinds of features
    - visible features related to a true class
    - invisible features related to a fooling class





# Proposed Approach (cont)

Interpolated samples: For each sample, we selected the nearest samples from other other classes (the images may be misclassified to the source image).

$$I_{int} = \alpha I_{c1} + (1 - \alpha)I_{c2}$$







# Evaluation

Attack Algorithms:

- 1. Fast Gradient Sign (FGS) [Goodfellow2017]
- 2. Targeted FGS (T-FGS) [Goodfellow2017]
- 3. Iterative FGS (I-FGS) [Goodfellow2017]
- 4. DeepFool (DF) [Moosavi2016]
- 5. Carlini and Wagner (C&W) [Carlini2017]



Four types of adversarial examples for MNIST (first row) and CIFAR-10 (second row)





# Evaluation (cont.)

- Dataset
  - MNIST [LeCun1998]
  - CIFAR-10 [Krizhevsky2009]

#### Criteria

- Accuracy: correct classification rate
- Rejection: assigned to dustbin class
- Error: misclassification rate







### **Evaluation: Black-box MNIST Adversaries**

| Training set: <in-dist, out-dist.=""></in-dist,> |      | <mnist, —=""></mnist,> | <mnist, notmnist=""></mnist,> | <mnist, notmnist+intrpl.=""></mnist,> |
|--------------------------------------------------|------|------------------------|-------------------------------|---------------------------------------|
| Model                                            |      | Naive CNN              | Augmented CNN                 | Augmented CNN                         |
| In-dist. test                                    | Acc. | 99.5                   | 99.47                         | 99.48                                 |
| Out-dist. test                                   | Rej. | -                      | 99.96                         | 99.98                                 |
|                                                  | Acc  | 35.14                  | 19.15                         |                                       |
| FGS                                              | Rej  | -                      | 65.19                         | 99.59                                 |
|                                                  | Err  | 64.86                  | 15.66                         | 0.06                                  |
|                                                  | Acc  | 16.37                  | 30.97                         | 0.0                                   |
| I-FGS                                            | Rej  | -                      | 27.08                         | 100                                   |
|                                                  | Err  | 83.63                  | 41.95                         | 0.0                                   |
|                                                  | Acc  | 19.99                  | 1.17                          | 0.0                                   |
| T-FGS                                            | Rej  | -                      | 95.92                         | 100                                   |
|                                                  | Err  | 80.01                  | 2.91                          | 0.0                                   |
|                                                  | Acc  | 1.89                   | 11.45                         | 5.37                                  |
| DeepFool                                         | Rej  | -                      | 4.72                          | 89.84                                 |
|                                                  | Err  | 98.11                  | 83.83                         | 4.8                                   |
|                                                  | Acc  | 22.49                  | 27.5                          | 7.5                                   |
| $C\&W(L_2)$                                      | Rej  | -                      | 5.99                          | 77.49                                 |
|                                                  | Err  | 77.51                  | 66.51                         | 15.01                                 |
|                                                  |      |                        |                               |                                       |
| Average Error                                    |      | 80.82                  | 42.17                         | 3.97                                  |





## **Evaluation: Black-box CIFAR-10 Adversaries**

| Training set: <in-dist, out-dist.=""></in-dist,> |      | <cifar-10, —=""></cifar-10,> | <cifar-10, cifar100=""></cifar-10,> | <cifar-10, cifar100+intrpl.=""></cifar-10,> |
|--------------------------------------------------|------|------------------------------|-------------------------------------|---------------------------------------------|
| Model                                            |      | Naive VGG                    | Augmented VGG                       | Augmented VGG                               |
| In-dist. test                                    | Acc. | 90.53                        | 88.58                               | 86.65                                       |
| Out-dist. test                                   | Rej. |                              | 95.36                               | 96.21                                       |
|                                                  | Acc  | 36.16                        | 27.65                               | 23.94                                       |
| FGS                                              | Rej  | -                            | 38.94                               | 49.23                                       |
|                                                  | Err  | 63.84                        | 33.41                               | 26.83                                       |
|                                                  | Acc  | 50.34                        | 45.98                               | 41.92                                       |
| I-FGS                                            | Rej  | -                            | 18.57                               | 25.88                                       |
|                                                  | Err  | 49.66                        | 35.45                               | 32.2                                        |
|                                                  | Acc  | 36.24                        | 27.06                               | 24.2                                        |
| T-FGS                                            | Rej  | -                            | 40.54                               | 50.77                                       |
|                                                  | Err  | 63.76                        | 32.4                                | 25.03                                       |
|                                                  | Acc  | 56.82                        | 45.63                               | 42.31                                       |
| DeepFool                                         | Rej  | -                            | 31.0                                | 38.86                                       |
| 22.2                                             | Err  | 43.18                        | 23.37                               | 18.83                                       |
|                                                  | Acc  | 42.5                         | 46.5                                | 39                                          |
| $C\&W(L_2)$                                      | Rej  | -                            | 18.5                                | 39.5                                        |
|                                                  | Err  | 57.5                         | 35                                  | 21.5                                        |
| Average Error rate                               |      | 55.59                        | 31.92                               | 24.88                                       |





# More Expressive Feature Space of Augmented CNN

- The penultimate layer of a CNN can be regarded as feature space [benjo2009]
- Augmented CNNs learn more expressive and representative feature spaces such that:
  - Disentangle natural out-dist. samples from in-dist. ones
  - Also separate many of adversaries (without even trained the CNN on them)





# Comparison of feature spaces\* - MNIST



 $\Delta \lambda$ 

FGS adversaries









# Comparison of feature spaces - CIFAR10







## Conclusion

- Augmented CNNs are more **dependable** as they:
  - **Controlling over-generalization** in some out-distribution regions
    - proper decision-making in presence of out-dist. samples by rejecting them as "dustbin"
  - **Distengle some of adversarial examples** from clean samples through learning more expressive feature space
  - Decreasing error rates on various types of well-known adversarial examples by rejecting them





### Future work

- Evaluating augmented CNN in white-box setting
- Investigating the features of a an **appropriate** out-dist. sample set
- Evaluating our method on other large-scaled image and non-image datasets





# Q & A

mahdieh.abbasi.1@ulaval.ca

rajabia@oregonstate.edu

Christian.Gagne@gel.ulaval.ca

rakesh.bobba@oregonstate.edu







### Reference

[Grosse et al. Arxiv2017] Grosse, K., Manoharan, P., Papernot, N., Backes, M., & McDaniel, P. (2017). On the (statistical) detection of adversarial examples. *arXiv preprint arXiv:1702.06280*.

[Xu et al. NDSS 2018] Xu, W., Evans, D., & Qi, Y. (2018). Feature squeezing: Detecting adversarial examples in deep neural networks. *Network and Distributed System Security Symposium.* 

[Papernot et al. S&P2016] Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016, May). Distillation as a defense to adversarial perturbations against deep neural networks. In *Security and Privacy (SP), 2016 IEEE Symposium on* (pp. 582-597).

[Madry et al. ICLR2018] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards deep learning models resistant to adversarial attacks. International Conference on Learning Representations(ICLR).

[Carlini et al. S&P2017] Carlini, N., & Wagner, D. (2017, May). Towards evaluating the robustness of neural networks. In *Security and Privacy (SP), 2017 IEEE Symposium on* (pp. 39-57). IEEE.

![](_page_20_Picture_6.jpeg)

![](_page_20_Picture_7.jpeg)

### Reference

[Kurakin et al. ICLR2017] Kurakin, A., Goodfellow, I., & Bengio, S. (2017). Adversarial examples in the physical world. *International Conference on Learning Representations*, 2017

[Moosavi et al. CVPR2016] Moosavi-Dezfooli, S. M., Fawzi, A., & Frossard, P. (2016). Deepfool: a simple and accurate method to fool deep neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 2574-2582).

[LeCun 1998] Y. LeCun. The mnist database of handwritten digits. http://yann.lecun. com/exdb/mnist/, 1998.

[Krizhevsky 2009] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.

[Bengio 2009] Bengio, Yoshua. "Learning Deep Architectures for AI." Machine Learning 2.1 (2009): 1-127.

[Goodfellow et al. ICLR2014] Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). International Conference on Learning Representations (ICLR).

![](_page_21_Picture_7.jpeg)

![](_page_21_Picture_8.jpeg)